Name: _____

Math 315, Section 2 Exam 2 Instructor: David G. Wright 5-7 March 2009

- 1. (30%) Complete the following definitions:
 - (a) A set U in \mathbb{R} is open if
 - (b) A point p is a *limit point* of a set A if
 - (c) Let $f: A \to \mathbb{R}$ be a function. Then $\lim_{x \to c} f(x) = L$ means
 - (d) Let $f: A \to \mathbb{R}$ be a function. Then f is *continuous* at $c \in A$ means
 - (e) A set C in \mathbb{R} is compact if
 - (f) Let $f: A \to \mathbb{R}$ be a function. Then f is uniformly continuous means
- 2. (10%) If U and V are open sets, prove $U \cap V$ is also open.

3. (10%) A set I is an *interval* means that if $x, y \in I$, then everything between x and y is also in I. Prove that an interval is connected.

4. (10%) Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions. Show that the composition $g \circ f(x) = g(f(x))$ is continuous.

5. (10%) Prove that a continuous function on a compact set has a maximum; i.e., if $f: K \to \mathbb{R}$ is a continuous function and K is compact, then there is a $c \in K$ so that $f(x) \leq f(c)$ for all $x \in K$.

6. (10%) Let
$$f(x) = \frac{1}{x^2}$$
. Show

(a) f is uniformly continuous on $[1, \infty)$

(b) f is not uniformly continuous on (0, 1].

7. (10%) Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one value of $x \in [0,1]$.

8. (10%) Let A be a subset of \mathbb{R} and \overline{A} be A along with all the limit points of A. Show that \overline{A} is a closed set.